
Add to Cart
16-Bit, 4-Channel Serial Output Sampling ANALOG-TO-DIGITAL CONVERTER
FEATURES
● PIN FOR PIN WITH ADS7841
● SINGLE SUPPLY: 2.7V to 5V
● 4-CHANNEL SINGLE-ENDED OR 2-CHANNEL DIFFERENTIAL INPUT
● UP TO 100kHz CONVERSION RATE
● 86dB SINAD
● SERIAL INTERFACE
● SSOP-16 PACKAGE
APPLICATIONS
● DATA ACQUISITION
● TEST AND MEASUREMENT
● INDUSTRIAL PROCESS CONTROL
● PERSONAL DIGITAL ASSISTANTS
● BATTERY-POWERED SYSTEMS
DESCRIPTION
The ADS8341 is a 4-channel, 16-bit sampling Analog-toDigital (A/D) converter with a synchronous serial interface. Typical power dissipation is 8mW at a 100kHz throughput rate and a +5V supply. The reference voltage (VREF) can be varied between 500mV and VCC, providing a corresponding input voltage range of 0V to VREF. The device includes a shutdown mode that reduces power dissipation to under 15µW. The ADS8341 is tested down to 2.7V operation. Low power, high speed, and an onboard multiplexer make the ADS8341 ideal for battery-operated systems such as personal digital assistants, portable multi-channel data loggers, and measurement equipment. The serial interface also provides low-cost isolation for remote data acquisition. The ADS8341 is available in an SSOP-16 package and is ensured over the –40°C to +85°C temperature range.
ABSOLUTE MAXIMUM RATINGS(1)
+VCC to GND ........................................................................ –0.3V to +6V
Analog Inputs to GND ............................................ –0.3V to +VCC + 0.3V
Digital Inputs to GND ........................................................... –0.3V to +6V
Power Dissipation .......................................................................... 250mW
Maximum Junction Temperature ................................................... +150°C
Operating Temperature Range ........................................ –40°C to +85°C
Storage Temperature Range ......................................... –65°C to +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.
PIN CONFIGURATIONS